从大数据工程师入手,从java基础开始学,毕竟编程基础是每个岗位都需要的,而且java的适用面是最广的,虽然现在python的势头很足,但相对java来说,python比较简单,只要java能熟练使用了,要学会python,两周的时间就没问题,从长远的职业规划来说,学习没有速成的方法,脚踏实地才是最重要的。
我这有大数据工程师详细的学习的计划,分享给大家,希望对你们有帮助。
第一阶段:静态网页基础(HTML+CSS)
1. 难易程度:一颗星
2. 主要技术包括:html常用标签、CSS常见布局、样式、定位等、静态页面的设计制作方式等
第二阶段:JavaSE+JavaWeb
1. 难易程度:两颗星
2. 主要技术包括:java基础语法、java面向对象(类、对象、封装、继承、多态、
抽象类、接口、常见类、内部类、常见修饰符等) 、异常、集合、文件、IO、
MYSQL(基本SQL语句操作、多表查询、子查询、存储过程、事务、分布式事务)
JDBC、线程、反射、Socket编程、枚举、泛型、设计模式
第三阶段:前端框架
1. 难易程序:两星
2. 主要技术包括:Java、Jquery、注解反射一起使用,XML以及XML解析、解析dom4j、jxab、jdk8.0新特性、SVN、Maven、easyui
第四阶段:企业级开发框架
1. 难易程序:三颗星
2. 主要技术包括:Hibernate、Spring、SpringMVC、log4j slf4j 整合、myBatis、struts2、Shiro 、redis、流程引擎activity, 爬虫技术nutch,lucene,webService CXF、Tomcat集群和热备 、MySQL读写分离
第五阶段: 初识大数据
1. 难易程度:三颗星
2. 主要技术包括:大数据前篇(什么是大数据,应用场景,如何学习大数据库,虚拟机概念和安装等)、Linux常见命令(文件管理、系统管理、磁盘管理)、Linux Shell编程(SHELL变量、循环控制、应用)、Hadoop入门(Hadoop组成、单机版环境、目录结构、HDFS界面、MR界面、简单的SHELL、java访问hadoop)、HDFS(简介、SHELL、IDEA开发工具使用、全分布式集群搭建)、MapReduce应用(中间计算过程、Java操作MapReduce、程序运行、日志监控)、Hadoop高级应用(YARN框架介绍、配置项与优化、CDH简介、环境搭建)、扩展(MAP 端优化,COMBINER 使用方法见,TOP K,SQOOP导出,其它虚拟机VM的快照,权限管理命令,AWK 与 SED命令)
第六阶段:大数据数据库
1. 难易程度:四颗星
2. 主要技术包括:Hive入门(Hive简介、Hive使用场景、环境搭建、架构说明、工作机制)、Hive Shell编程(建表、查询语句、分区与分桶、索引管理和视图)、Hive高级应用(DISTINCT实现、groupby、join、sql转化原理、java编程、配置和优化)、hbase入门、Hbase SHELL编程(DDL、DML、Java操作建表、查询、压缩、过滤器)、细说Hbase模块(REGION、HREGION SERVER、HMASTER、ZOOKEEPER简介、ZOOKEEPER配置、Hbase与Zookeeper集成)、HBASE高级特性(读写流程、数据模型、模式设计读写热点、优化与配置)
第七阶段:实时数据采集
1. 难易程序:四颗星
2. 主要技术包括:Flume日志采集,KAFKA入门(消息队列、应用场景、集群搭建)、KAFKA详解(分区、主题、接受者、发送者、与ZOOKEEPER集成、Shell开发、Shell调试)、KAFKA高级使用(java开发、主要配置、优化项目)、数据可视化(图形与图表介绍、CHARTS工具分类、柱状图与饼图、3D图与地图)、STORM入门(设计思想、应用场景、处理过程、集群安装)、STROM开发(STROM MVN开发、编写STORM本地程序)、STORM进阶(java开发、主要配置、优化项目)、KAFKA异步发送与批量发送时效,KAFKA全局消息有序,STORM多并发优化
第八阶段:SPARK数据分析
1. 难易程序:五颗星
2. 主要技术包括:SCALA入门(数据类型、运算符、控制语句、基础函数)、SCALA进阶(数据结构、类、对象、特质、模式匹配、正则表达式)、SCALA高级使用(高阶函数、科里函数、偏函数、尾迭代、自带高阶函数等)、SPARK入门(环境搭建、基础结构、运行模式)、Spark数据集与编程模型、SPARK SQL、SPARK 进阶(DATA FRAME、DATASET、SPARK STREAMING原理、SPARK STREAMING支持源、集成KAFKA与SOCKET、编程模型)、SPARK高级编程(Spark-GraphX、Spark-Mllib机器学习)、SPARK高级应用(系统架构、主要配置和性能优化、故障与阶段恢复)、SPARK ML KMEANS算法,SCALA 隐式转化高级特性。
转载自网络 不用于商业宣传 版权归原作者所有,侵权删。