分享到:
电话:0371-61318821
助力企业快速实现 "互联网+" 计划

官方微信

郑州星云互联新闻中心,郑州星云互联资讯
首页 > 新闻中心 > 行业新闻

业务分析没思路:学会这个通用的指标思维,比看书有用

怎么让数据分析落地业务,这个是我们这个行业公认的难题,其实很多人的原因都是因为没有指标思维,以为有了数据就能分析,这是缺少指标思维的表现。那么怎么才能提高指标思维呢?

什么是指标思维?

首先,指标是什么呢?

首先我们都知道,数据分析人的信条当中有一条是“可以量化的要量化,不可以量化的也要量化”,因为只有通过标准或者规则的量化,我们才能说明某件事物是好的还是坏的。

就好比在年度总结会上,领导告诉你:“今年我们公司的净利润大幅增长了”,这个“净利润大幅增长”就不足以成为一个指标,因为它没有量化,也有可能大幅增长只是1%或者2%,因为如果没有参照物相比,我们就不能判断其是否是“大幅增长。”

编辑

所以量化指标是最能体现事物程度的一种方法,正好像高考要用分数、工作也要背KPI一样,只有不断去量化业务指标,能够帮助我们更加深入的了解业务,只有我们知道了该用什么指标,才意味着我们已经理解了业务。

那么指标也是有其构成方式的,简单来说,指标是由三部分组成的:

指标=核心需求+对象+时间

比如说业务跟你说要分析一下APP的转化情况,这个“转化情况”是分析需求,不是我们真正要分析的量化指标,那么我们怎么去找量化指标呢?

编辑

就是参照上面的公式:

那么最后我们要分析这个app的转化情况,就可能要分析下面这样的指标:

这样不仅指标能提升我们对业务的理解,单是怎么去确定指标的这个过程,就能极大地提升我们对业务的理解,因为如果你不了解业务,你是无法做出这样的表达的。所以学习指标思维,第一步就是要学会确定指标、定义指标。

如何量化指标?

日常的分析工作中,除了这些基础指标,还会遇到一些特定的业务问题,需要用数据分析解决。比如业务想对比用户对两款产品的喜爱程度,这种情况下我们该怎么办?

想要量化某个事物,关键是要先搞清楚量化后的数据是为了解决什么问题,也就是目标。

编辑

1、我们要澄清目标到底是什么?

你想量化用户对某个功能的喜爱程度,那么究竟什么算是“喜欢这个功能" ?是使用频次吗?是使用深度吗?还是用户分享的比例?你需要不断用问题去澄清目标或者说是需求到底是什么。

2、考虑如何量化这个目标?

如果是使用的深度,那么我们可以量化”使用深度”吗?可以用功能内的停留时长,或者各个子功能的使用广度等等。找到可以用数据衡量的指标来表示“深度”

3、量化后的数据能增加我们对目标的了解吗?

比如"子功能的使用广度"这个指标能让我们确定用户喜欢这个产品吗?如果这个指标比较高的用户只是用户不明白如何使用产品,而进行的探索动作。功能使用率高的用户不能代表用户喜欢这款产品,那么这个数据不能有效降低我们对产品受欢迎程度的了解。

如果量化后的数据对我们理解需求没有什么帮助,那么我们就得回到第一-步 ,重新澄清什么是目标。

如何拆解指标?

举个例子,某款APP刚刚研发出来以后,一般为了推广这个app,运营人员都会去花钱买一些量,也就是用机器或者真人去下载app、然后点击app,也就是刷日活。

这种情况下,我们该用什么样的指标去衡量这款app的使用情况呢?

1、理解业务,理解目标

首先我们要先理解业务和目标,我们是为了衡量app的使用情况,那么按照我们刚才量化指标的思路,我们可以通过哪些量化指标去衡量呢?我们可以通过一个忠实用户的行为进行理解:

编辑

很显然,这里面涉及到的跳出率、留存率、激活率、注册率、下载率、交易率等等很多,都是我们衡量这个APP使用情况的指标,而这些指标只有在我们真正了解了业务之后才能知道。

2、确定核心指标

第一步我们明确了分析需求,找出了初步的指标,第二步就是确定核心指标。

比如第一步里提到的下载率,在例子里这种情况下下载率是绝对没有说服力的,因为我们通过买量和买日活的方式去造成了一部分的虚荣指标,虚荣指标是没办法说明app的使用情况的。

所以我们应该用停留时长或者跳转率去排除掉虚荣因素的影响,比如我们的核心指标可以是停留时长大于15秒的用户,或者是跳转率。

编辑

每个APP的核心指标不太一样,所以一定要多花时间去考虑这件事,这个非常重要,不只是看日活和留存那么简单。

3、按照维度拆解

核心指标的波动必然是某种维度的波动引起,所以要监控核心指标,本质上还是要监控维度核心指标。通用的拆解方法都是先对核心指标进行公式计算,再按照业务路径来拆解。

假设,当前的核心指标是停留时长大于15秒的用户数。

停留时长大于15秒的用户数=打开APP的用户数*停留时长大于15秒的占比

分析“打开进入APP的用户数”时,我们要关注渠道转化率,分析用户从哪里来;同时用户通过哪种方式打开的,如通过点击桌面图标、点击通知栏、点击Push等;并且,这类用户的用户画像是什么,用户画像也更多是在这个时候才最有作用,更多要基于场景和相应的指标来分析。

编辑

“停留时长大于3秒的占比”该指标要重点关注如停留时长的分布,停留1秒的用户有多少、2秒的用户有多少、3秒的用户有多少,具体分布情况是怎样的;停留大于3秒的用户特征和行为特性是怎么样的情况;停留小于3秒的用户特征,并且要分析是否有作弊或刷量的可能性。

每一个环节的关键指标都可以通过公式的形式进行拆解,再根据拆解公式逐个分析对应的影响因素,当然还有其他的维度,这里大家可以重点看一下之前的细分思维。

转载自网络 不用于商业宣传 版权归原作者所有,侵权删。


作者: 时间:2020-09-09 阅读:101 分享到: